Спортивный портал - Andrewsattic

Спортивный портал - Andrewsattic

» » Перлит в эвтектоидной стали. Перлит Грубый перлит

Перлит в эвтектоидной стали. Перлит Грубый перлит

ПЕРЛИТ – структурная составляющая в углеродистых и легированных сталях и чугунах, возникающая при эвтектоидном превращении (см МЕТАЛЛОВЕДЕНИЕ ФИЗИЧЕСКОЕ) согласно диаграмме состояния железо – углерод . Перлит состоит из двух фаз – феррита и цементита , феррит – железо с очень малым количеством углерода (до 0,03%), а цементит – химическое соединение Fe 3 C, содержащее по массе 6,67%С. Среднее содержание углерода в перлите – 0,8%С, а сталь с целиком перлитной структурой, содержащая 0,8% углерода, называется эвтектоидной. При содержании углерода менее 0,8% сталь состоит из перлита и феррита, если углерода более 0,8% – из перлита и, в соответствии с диаграммой состояния железо – углерод.

При металлографическом исследовании изучается срез поверхности металла (металлографический шлиф), который подвергается шлифовке, полировке и химическому травлению специально подобранными реактивами. Химическая активность цементита больше, чем феррита, поэтому под микроскопом сильно протравленные участки цементита имеют черный цвет, а участки феррита сохраняют светлый цвет.

Перлит обычно имеет пластинчатую структуру, каждое зерно перлита состоит из параллельных пластинок феррита и цементита шириной в десятые доли мкм. Длина пластинок соответствует размеру зерен металла, и пластинки идут от одной границы зерна к другой. Если такая объемная пластинчатая структура пересекается плоскостью шлифа и подвергается травлению, то на ее поверхности возникает полосчатая структура из светлых полосок феррита и тонких полосок цементита. При различных термообработках ширина полосок (межпластиночное расстояние) может быть различным, ширина полосок цементита в 7 раз меньше, чем полосок феррита. При длительной выдержке при высоких температурах зерна феррита и цементита могут переходить из пластинчатой формы в округлую, и на металлографическом шлифе наблюдаются мелкие, темные, округлые зерна цементита на фоне крупных зерен феррита.

Перлит – продукт эвтектоидного превращения высокотемпературной фазы – аустенита при термической обработке сплавов. Аустенит при охлаждении при температуре 723° С распадается на феррит и цементит. Перлитное превращение всегда начинается на границах зерен аустенита. Чтобы возникли частицы новой фазы, нужно создать зоны пониженной и повышенной концентрации углерода. Исходный аустенит содержит 0,8% углерода, а в результате превращения образуется феррит, практически не содержащий углерода, и цементит с 6,67% углерода. Для объяснения этих процессов предложен флуктуационный механизм, согласно которому атомы углерода с большой диффузионной подвижностью при высоких температурах, могут создавать зоны с повышенной концентрацией углерода. Этот процесс является энергетически выгодным, и зародыш цементита вырастает до критического размера.

Железо - металл серебристобелого цвета. Чистое железо, которое может быть получено в настоящее время, содержит 99,999 % Fe, а технические сорта 99,8-99,9 % Fe.

Температура плавления железа 1539 °С.

Железо известно в двух полиморфных модификациях α и γ . α -железо существует при температурах ниже 910 °С и выше 1392 °С (рис. 1). Для интервала температур 1392- 1539 °С α -железо нередко обозначают как δ -железо.


Рис. 1. Кривые нагрева и охлаждения железа

Кристаллическая решетка α -железа - объемноцентрированный куб с периодом решетки 0,28606 нм. До температуры 768 °С α -железо магнитно (ферромагнитно). Критическую точку (768 °С), соответствующую магнитному превращению, т. е. переходу из ферромагнитного состояния в парамагнитное называют точкой Кюри и обозначают А2.

Критическую точку α -γ превращення (рис. 1) при 910 °С обозначают соответственно Ас3 (при нагреве) и Аг3 (при охлаждении). Критическую точку α -γ превращення железа при 1392 °С обозначают Ас4 (при нагреве) и Аг4 (при охлаждении).

Кристаллическая решетка γ -железа - гранецентрированныи куб с периодом 0,3645 нм при температуре 910 °С. Плотность железа выше, чем железа, и равна 8,0-8,1 г/см3. При превращении α -γ происходит сжатие. Объемный эффект сжатия составляет примерно 1%.

Углерод является неметаллическим элементом. Углерод полиморфен. В обычных условиях он находится в виде модификации графита, но может существовать и в виде метастабильной модификации алмаза.

Углерод растворим в железе в жидком и твердом состояниях, а также может быть в виде химического соединения - цементита, а в высокоуглеродистых сплавах и в виде графита.

При этом в сплавах могут образовываться следующие структурные составляющие: феррит, аустенит, цементит, перлит, ледебурит и др.

Феррит - твердый раствор углерода и других примесей в α -железе.
Это почти чистое железо, так как растворимость углерода в железе чрезвычайно мала (0,006...0,03 %). Феррит устойчив до температуры 911 °С, имеет очень небольшие твердость и прочность, но высокую пластичность, поэтому хорошо деформируется в холодном состоянии (штампуется, прокатывается, протягивается). Чем больше феррита в железоуглеродистом сплаве, тем сплав пластичнее.

Аустенит - твердый раствор углерода и других примесей в γ -железе. Предельная растворимость углерода в у-железе - 2,14%. Предельная растворимость углерода в железе - 2,14 %. Характерная особенность аустенита в том, что он может существовать в железоуглеродистых сплавах только при высоких температурах (от 1539 до 727 °С). Аустенит по пластичности соизмерим с ферритом, но по твердости превосходит его примерно в 2 раза.

Цементит - это химическое соединение железа с углеродом - карбид железа Fe 3 C. В цементите содержится 6,67 % углерода. Цементит имеет сложную ромбическую решетку с плотной упаковкой атомов. Температура плавления цементита около 1600 °С. Содержание углерода в цементите составляет 6,67 %, и это самая твердая и хрупкая структурная составляющая железоуглеродистых сплавов. Цементит имеет высокую твердость и не обладает пластичностью. Чем больше цементита в железоуглеродистых сплавах, тем они тверже и более хрупки.

Перлит - механическая смесь феррита и цементиту, подразделяется на пластинчатый и зернистый в зависимости от формы кристаллов цементита, имеющих вид соответственно либо пластинок, либо округлых мелких зерен. Такую смесь называют эв-тектоидной, так как она хотя и подобна эвтектической, но образовалась в отличие от нее не при кристаллизации, а в процессе распада твердого раствора.

Ледебурит - эвтектическая смесь аустенита и цементита. Температура образования ледебурита 1147 °С. Он может существовать до температуры 727 °С, ниже этой температуры аустенит распадается на перлит и цементит.


Структурные составляющие сталей и чугунов

Наименование Краткое описание Условие образования Температуры устойчивости структуры Физические свойства Твердость HB
Аустенит Твердый раствор углерода и других элементов в γ -железе. Содержит до 2% углерода При затвердевании жидкого раствора с содержанием углерода не более 4,3% Выше Ас3, Аст, Ас1 Мягок, немагнитен, тягуч, мало упруг, обладает электрическим сопротивлением 170-220
Феррит Твердый раствор углерода и других элементов в α -железе. Содержит до 0,006% углерода При медленном охлаждении доэвтектоидной стали ниже Ar3, выделяется из аустенита Ниже Ac3 Мягок, очень тягуч, мало упруг, магнитен при температуре ниже точки Кюри 60-100
Цементит Химическое соединение железа с углеродом - карбид железа Fe 3 C. Содержит 6,67% углерода Первичный - из жидкого раствора при содержании углерода свыше 4,3%; вторичный - из аустенита при медленном охлаждении Ниже Ac3 Тверд, хрупок, магнитен до температуры 210 °С 820
Перлит Эвтектоидная смесь цементита с ферритом При медленном охлаждении аустенита в результате диффузии углерода Ниже 723 °С Более тверд и прочен, чем феррит, но менее пластичен, магнитен 160-230
Мартенсит Твердый раствор углерода и других элементов в α -железе с искаженной тетрагональной решеткой При охлаждении аустенита со скоростью выше критической Ниже 150 °С Хрупок, тверд, магнитен, теплопроводность и электропроводность низкая 650-700
Троостит При нагреве мартенсита до 250-400 °С До 500 °С Магнитен, менее прочен и более электропроводен чем мартенсит 350-450
Игольчатый троостит Высокодисперсная смесь феррита и карбидов При изотермическом превращении аустенита в пределах температур 250-400 °С До 500 °С Тверд, малопластичен, магнитен Свыше 350
Сорбит Дисперсная смесь феррита и карбидов При нагреве мартенсита в пределах от 400 °С до Ac1 До Ac1 Пластичен, вязок, магнитен 230-320
Ледебурит Эвтектическая смесь аустенита и цементита при температуре выше 723 °С и перлита и цементита при температуре ниже 723 °С. Содержит 4,3% углерода При затвердевании жидкого сплава с содрежанием углерода свыше 2% Ниже 1130 °С Хрупок 900-1000

Диаграмма состояния железо-углерод (Fe-С)

На диаграмме состояния железо-углерод (рис. 2) приведен фазовый состав и структура сплавов с концентрацией от чистого железа до цементита (6,67 % С).


Рис. 2. Диаграмма железо-углерод

Линии диаграммы определяют превращения в структуре и свойствах сплавов, происходящие при изменении температуры. Чистое железо плавится и затвердевает при постоянной температуре 1539 °С, все остальные сплавы железа с углеродом плавятся (затвердевают) и испытывают превращения структуры в некотором интервале температур.

Рассматривая эти превращения, можно выделить два их типа: превращение структуры сплавов при переходе из жидкого состояния в твердое (первичная кристаллизация) и превращения в твердом состоянии (вторичная кристаллизация).

Первичная кристаллизация для всех сплавов начинается при снижении температуры по линии ликвидуса ACD. При этом сплавы, содержащие 0...4,3% С, начинают затвердевать по линии АС с выделением зерен аустенита, а сплавы с содержанием углерода выше 4,3 % затвердевают по линии CD, выделяя зерна цементита, называемого первичным. В точке С при температуре 1147 °С и содержании 4,3 % углерода из жидкого сплава кристаллизуется одновременно аустенит и первичный цементит, образуется эвтектическая смесь - ледебурит, который присутствует во всех сплавах, относящихся к чугунам.

Кристаллизация сплавов заканчивается по линии солидуса AECF.

Дальнейшие изменения структуры сплавов происходят при понижении температуры в твердом состоянии, т.е. при вторичной кристаллизации.

Вторичная кристаллизация в сплаве железо-углерод связана с аллотропным превращением у-железа в a-железо и характеризуется линиями диаграммы GSEF и PSK.

Линия GS показывает начало превращения аустенита в феррит, поэтому в области GSP будет структура аустенит + феррит. Критические точки, лежащие на линии GS, обозначаются либо Ас3 при нагреве, либо Аг3 при охлаждении.

Линия SE показывает снижение растворимости углерода в железе с понижением температуры. Критические точки на этой линии обозначают Аст. Если в точке Е при температуре 1147 °С растворимость углерода максимальная и достигает 2,14 %, то в точке S при 727 °С растворимость углерода составляет всего 0,8 %. Следовательно, во всех сталях в интервале концентраций углерода 0,8...2,14 % из аустенита выделяется избыточный углерод, который, соединяясь с железом, образует цементит, называемый вторичным, а сталь имеет структуру аустенит + цементит вторичный.

Точка S является концом равновесного существования аустенита и называется эвтектоидной точкой. Она делит все стали на две типичные группы: левее точки S находятся доэвтектоидные стали со структурой феррит + перлит, правее - заэвтектоидные со структурой цементит вторичный + перлит. В точке S сталь содержит 0,8 % углерода, имеет структуру перлита и называется эвтектоидной.

При охлаждении аустенита с низким содержанием углерода в результате его превращения в феррит в области QPG образуется однофазная ферритная структура.

Для всех сплавов железо-углерод распад аустенита заканчивается по линии PSK (727 °С). Критические точки, лежащие на этой линии, обозначаются при нагреве Ac1 и при охлаждении Ar1.

Итак, рассматривая превращения в железоуглеродистых сплавах по диаграмме состояния, можно отметить следующие особенности:
точки С и S являются характерными точками структурных превращений. Выше точки С находится жидкий раствор, а выше точки S - твердый раствор (аустенит);
в точке С сходятся линии ликвидуса АС и CD, указывающие соответственно на начало выделения кристаллов аустенита и первичного цементита из жидкого раствора (процесс первичной кристаллизации); в этой точке образуется эвтектическая механическая смесь - ледебурит;
в точке S сходятся ветви линии солидуса GS и ES, указывающие на начало выделения кристаллов феррита и вторичного цементита из твердого раствора (процесс вторичной кристаллизации) и образование эвтектоидной механической смеси - перлита.

Рассмотрим превращения структуры стали под воздействием температуры. Все описанные ранее структуры стали - ферритно-перлитная, перлитная и перлитно-цементитная - обратимы. Так, при нагреве доэвтектоидных сталей до температуры выше 727 °С (линия критических точек) перлит превращается в аустенит. При дальнейшем нагреве феррит растворяется в аустените и заканчивается процесс превращения по линии GS (критические точки). У эвтектоидной стали (0,8 % С) перлит превращается в аустенит в точке S. При нагреве заэвтектоидной стали перлит превращается в аустенит при температуре 727 °С (линия критических точек), и при дальнейшем нагреве происходит растворение цементита (вторичного) в аустените, которое заканчивается по линии SE (критические точки).

Таким образом, при нагреве стали до температур выше точки S и линий критических точек ее структура представляет собой аустенит. Однако вновь образующийся аустенит оказывается неоднородным, так как содержание углерода будет большим в тех местах, где находятся пластинки цементита. Для получения однородного аустенита необходимо не только нагреть сталь до температуры на 30...50°С выше критических точек, но и выдержать ее при этой температуре некоторое время для завершении диффузионных процессов.

На структуру стали и ее свойства оказывает влияние не только нагрев, но и режим охлаждения, от которого зависит характер структуры, образующейся в результате превращения аустенита. При медленном непрерывном охлаждении аустенит превращается в равновесные, т. е. устойчивые при нормальных температурах и нагреве до температур ниже критических, структуры - перлит, феррит и цементит. При быстром охлаждении будет иметь место переохлаждение аустенита и образуются новые неравновесные мелкозернистые ферритно-цементитные структуры - сорбит, троостит и бейнит, которые различаются между собой механическими свойствами и прежде всего твердостью вследствие наличия в структуре разных по размерам и форме пластинок феррита и цементита. Твердость этих структур возрастает по мере снижения температуры их образования.

Сорбит представляет собой более мелкую, чем перлит, механическую смесь феррита с цементитом и имеет твердость НВ 2500...3000 МПа, а также более высокие прочность и упругость при достаточной вязкости.

У троостита смесь феррита с цементитом мельче, чем у сорбита, и его твердость равна 3500... 4000 МПа. Троостит по сравнению с сорбитом обладает и более высокими упругими свойствами, но меньшей вязкостью.

У бейнита игольчатая структура состоит из несколько перенасыщенного твердого раствора, претерпевшего мартенситное превращение, и частиц цементита. Поэтому твердость бейнита выше, чем троостита.

Если сильно переохладить аустенит, то произойдет бездиффузионное превращение γ -железа в α -железо, в результате которого образуется пересыщенный твердый раствор внедрения углерода в железе - структура, называемая мартенситом. Данная структура состоит из игл разных размеров. Мартенсит имеет самую высокую из структурных составляющих сплавов железа твердость, хорошее сопротивление износу, но низкие эластичность и вязкость, большие внутренние напряжения. Он является основной закалочной структурой.


Основные превращения в железоуглеродистых сплавах при медленном нагревании и охлаждении

Линия на диаграмме Температура превращения, °С Описание превращения Обозначение критических точек
PSK 723 Превращение перлита в аустенит. Превращение аустенита в перлит Ac1, Ar1
MO 768 Потери магнитных свойств для сталей с содержанием углерода до 0,5%. Возникновение магнитных свойств для тех же сталей. Ac2, Ar2
GS 723-910 Окончание растворения феррита в аустените в доэвтектоидных сталях. Начало выделения феррита из аустенита в доэвтектоидных сталях. Ac3, Ar3
SE 723-1130 Окончание растворения цементита в аустените в заэвтектоидных сталях. Начало выделения цементита из аустенита в заэвтектоидных сталях. Acm, Arm
IE - Начало плавления стали при нагреве. Окончание затвердевания стали при охлаждении -
ECF - Начало плавления чугуна при нагреве. Окончание затвердевания чугуна при охлаждении -

На рисунке 1 показана , на которой область ниже температуры 727 ºС выкрашена темным цветом. Эта область является двухфазной. Любая сталь, которую медленно охладили до температуры ниже 727 ºС должна состоять из смеси двух фаз – феррита и цементита. Типы микроструктуры сталей в этой двухфазной области отличаются большим многообразием. Перлит является одним из таких типов.

Рисунок 1 – Часть фазовой диаграммы железо-углерод.
Образование перлитной микроструктуры при охлаждении стали
с содержанием углерода 0,77 % ниже температуры 727 ºС.

Перлитная структура в стали

Чтобы понять рассмотрим сталь с содержанием углерода 0,77 %, например, сталь У8. Если нагреть ее до температуры 800 ºС и выдержать при этой температуре 1-2 минуты, то в высокотемпературном микроскопе она бы выглядела так, как показано вверху рисунка 1 – структура полностью аустенитных зерен.

После охлаждения до температуры ниже А 1 – ниже 727 ºС – и выдержки при ней в течение 5-10 минут аустенитные зерна будут полностью заменены совершенно новыми зернами – перлитными, как это показано внизу рисунка 1.

В отличие от аустенитных или ферритных зерен перлитные зерна не являются единой фазой. Более того, они состоят из смеси двух фаз – феррита и цементита, образуя уникальную микроструктуру. Чтобы увидеть все детали этой микроструктуры маленькую область внутри перлитного зерна надо рассматривать при очень высоком увеличении, как это показано справа нижней части рисунка 1.

Цементит и феррит в перлите

Перлитная структура состоит из перемежающихся пластин феррита и цементита. Ферритные пластины являются намного толще, чем цементитные пластины. Они занимают 90 % всего объема зерна, по сравнению с оставшимися 10 % цементита.

На границах перлитных зерен происходит резкое изменение ориентации пластин, как это видно на микроструктуре реального стального образца под электронным микроскопом при увеличении х11000 (рисунок 2).

Рисунок 2 – Вид перлита под электронным микроскопом.
Исходное увеличение х11000

На этой фотографии цементитные пластины – это светлая фаза, а ферритные – темная. Цементитные пластины имеют толщину всего 0,1 мкм – слишком мало, чтобы их можно было увидеть в световой микроскоп. Несмотря на то, что цементит является хрупким, а перлит – не отличается хрупкостью. Это объясняется малым размером пластин цементита и большой объемной долей пластичного феррита.

Перлит при комнатной температуре

Если теперь нашу сталь У8 с содержанием углерода 0,77 % охладить от 700 ºС до комнатной температуры, как показано на рисунке 1, то микроструктура значительно не изменится – не важно как медленно или как быстро ее охлаждать. Феррит будет оставаться почти , а цементит – оставаться с содержанием углерода 6,7 % и с той же кристаллической структурой.

Согласно фазовой диаграмме, когда аустенит охлаждается ниже температуры А1 и выдерживается при ней короткое время, аустенит будет полностью заменятся смесью фаз феррит+цементит в том или другом виде. Дальнейшее охлаждение этой двухфазной смеси до комнатной температуры не дает никаких изменений в итоговой микроструктуре феррит+цементит.

С содержанием углерода 6,67%. В виду такой разницы содержание углерода в исходной и образующейся фазе процесс распада носит диффузионный характер.

Рис.33. Схема превращения аустенита в перлит

Рассмотрим превращения переохлажденного аустенита эвтектоидной стали (0,8%С). Образцы нагревают до t ≈ 770ОС, при которой ее структура состоит из однородного аустенита. Затем образцы быстро переносят в термостаты с заданной температурой - ниже А 1 (интервал между изотермами 25-30ОС), и в процессе изотермической выдержки наблюдают за происходящими в аустените превращениями.

Процесс превращения аустенита в перлит можно изобразить в виде кинетической кривой превращения в координатах степень превращения - время (рис.34).

В точке а обнаруживается начало превращения. В точке b - превращение заканчивается. Отрезок до точки а - инкубационный период. Отрезок до точки b - время превращения. Максимум скорости превращения соответствует примерно тому времени, когда превратилось ≈ 50% аустенита.

При высокой температуре (малая степень переохлаждения) превращение развивается медленно - продолжительность инкубационного периода и время превращения велики. При увеличении степени переохлаждения (снижении температуры превращения) скорость превращения возрастает. Максимум скорости превращения соответствует температуре t3. Дальнейшее снижение температуры приведет уже к уменьшению скорости превращения.

Максимальная скорость превращения достигается предварительным охлаждением аустенита до 500 -550 0 С.

Рис.34. Кинетика превращения аустенита в перлит

На рис.34а показана серия кинетических кривых, относящихся к разным температурам (разным степеням переохлаждения).

По полученным данным строят диаграмму изотермического превращения переохлажденного аустенита в координатах «температура - логарифм времени»

Линии начала и конца превращения напоминают букву С и называются С-образные кривые. Эта диаграмма распада переохлажденного аустенита для эвтектоидной стали . Левее линии начала превращения находится область устойчивого состояния переохлажденного аустенита с минимальной устойчивостью при t=500-550 0 C. В зависимости от степени переохлаждения на диаграмме выделяют перлитную область (при переохлаждении в интервале А 1 (550 0 С), бейнитную область (в интервале t 550 - М н), и мартенситную область при температуре переохлаждения ниже линии М н.

С увеличением степени переохлаждения (т.е. чем ниже температура изотермической выдержки) растет число зародышей новых зерен, число феррито-цементитных пластинок увеличивается, а их размеры и расстояния между ними сильно сокращаются. Таким образом, дисперсность образующихся фаз растет.


Перлит, сорбит, троостит представляют собой механические смеси феррита и цементита. Они различаются только по степени дисперсности. При этом повышается их твердость.

При медленном охлаждении со скоростью V 1 (вместе с печью) образуется сравнительно грубая пластинчатая смесь - обычный перлит. Твердость по Роквеллу HRC =10; σ в = 600 МПа.

При охлаждении на воздухе со скоростью V 2 образуется сорбит , который отличается от перлита более тонкодисперсным строением HRC =20; σ в = 850 МПа.

При охлаждении в масле со скоростью V 3 образуется еще более высокодисперсный троостит, HRC =30; σ в = 1100 МПа.

Лучшую пластичность и вязкость, а вместе с тем и прочность, имеет структура сорбита. Стали с сорбитной структурой более износостойкие. Они используются для изготовления нагруженных изделий.

Стали со структурой троостита обладают значительной упругостью и используются для изготовления пружин, рессор.

Превращение аустенита в мартенсит

При переохлаждении до температуры 200 0 С скорость диффузии атомов железа и углерода практически равна нулю, следовательно, при этой температуре скорость превращения переохлажденного аустенита в перлит также равна нулю.

При охлаждении образцов со скоростью выше критической при температуре 240° (линия MН) начинается γ → α превращение. Так как при этих температурах скорость диффузии мала, превращение носит без диффузионный характер и весь углерод, растворенный в решетке аустенита, остается в решетке феррита. В результате образуется пересыщенный твердый раствор внедрения углерода в α-железе - мартенсит . Атомы углерода располагаются на ребре куба элементарной ячейки. При этом ОЦК-решетка сильно искажается, превращаясь из кубической в тетрагональную (рис.35).

Рис.35. Тетрагональная кристаллическая ячейка

Наименьшая скорость охлаждения, необходимая для образования структуры мартенсита называется критической скоростью закалки - V кр.

Отношение c/a - называется степенью тетрагональности, (c/a¹1).

Мартенсит образуется при резком переохлаждении аустенита ниже температуры начала мартенситного превращения практически мгновенно. Кристаллы имеют форму пластин, в плоскости шлифа под микроскопом структура мартенсита выглядит как отдельные иглы, ориентированные под определенными углами друг к другу (рис.36).

Рис.36. Схема образования мартенсита

Твердость мартенсита зависит от содержания углерода, и максимально составляет величину порядка 60-65 HRC.

Твердость стали, зависит от скорости охлаждения из аустенитной области, определяющей тип структуры. Если проводить охлаждение с малой скоростью, то аустенит будет распадаться на феррито-цементитную смесь пластинчатого строения, которая называется перлитной. С увеличение скорости охлаждения происходит распад аустенита с образованием более дисперсных выделений феррита и цементита так же пластинчатого строения- сорбит с твердостью 250-300НВ и тростит, с твердостью 300-400НВ (рис.38).

Если аустенит переохлаждать до температуры начала мартенситного превращения то, никакого распада на ферито-цементитную смесь не происходит. Аустенит по бездифузионному механизму превращается в мартенсит. Скорость охлаждения касательная к перегибу с-образной кривой называется критической скоростью закалки. Это минимальная скорость охлаждения, при которой аустенит переохлаждается без распада до начала мартенситного превращения. Следовательно, при закалке сплавы необходимо охлаждать со скоростью выше критической.

Рис.37.Диаграмма изотермического распада аустенита

Прямая является границей между верхней и нижней частями диаграммы. Эта прямая характеризует начало мартенситного превращения аустенита

Нижняя часть диаграммы показывает, что для перевода всего остаточного аустенита в мартенсит необходимо понижать температуру стали до линии (конец мартенситного превращения).

Положение точек Mн и Mк зависит от содержания в стали углерода и присутствия легирующих элементов. Оно не зависит от скорости охлаждения. Поэтому на С-образной диаграмме эти линии горизонтальные.

Все легирующие элементы, кроме кобальта, увеличивают устойчивость переохлажденного аустенита. По этому С-образные кривые сдвигаются вправо, в сторону больших времен выдержки. Вместе с тем снижается критическая скорость закалки.

Температурный интервал Mн - Mк (мартенситное превращение) снижается вплоть до отрицательных температур. То же самое наблюдается в присутствии большого количества углерода. При содержании углерода свыше 0,6% Mк находится в области отрицательных температур (рис.38). Например, превращение всего аустенита в мартенсит для эвтектоидной углеродистой стали наступит лишь при температуре -50°.

Рис.38. Влияние содержания углерода на температуру начала и конца мартенситного превращения

Малейшая изотермическая выдержка в интервале температур Mн - Mк приводит к стабилизации аустенита, то есть превращение не доходит до конца, и кроме мартенсита в структуре наблюдается т.н. остаточный аустенит.

Мартенсит - очень твердая и хрупкая структура. Свойства зависят от количества углерода: HRC =55-65, σ в = 1600 -2200 МПа.

В интервале температур между перлитным и мартенситным превращениями происходит промежуточное превращение - бейнитное . В отличие от перлитного превращения, протекающего по диффузионному механизму, бейнитное превращение протекает как по диффузионному, так и по бездиффузионному (мартенситному) механизму. Поэтому бейнитное превращение иначе называют промежуточным. При таких степенях переохлаждения диффузия атомов возможна, а диффузия атомов железа практически проходить не может. Результатом распада аустенита в бейнитной области является структура бейнита - пересыщенного углеродом феррита, имеющего игольчатое строение. Поэтому бейнит иначе называют игольчатый тростит.

В отличие от перлитных структур в бейните повышенное содержание углерода, т.к. при этих температурах диффузионные процессы сильно замедляются, и перераспределение углерода не происходит в полной мере. Различают верхний и нижний бейнит. Верхний бейнит имеет так называемую перистую структуру близкую к троститной, образующейся при переохлаждении несколько ниже перегиба С-образной кривой. Нижний бейнит имеет игольчатое строение близкое к мартенситу. Он образуется при температуре на 50-100 о С выше Mн обладает благоприятным сочетанием свойств прочности (σ в = 1350 МПа), твердости (HRC =40) и пластичности.
















Сталь 112 Экстракционная реплика. В феррите видны мелкие выделения. Они образуют довольно длинные частицы, которые состоят из игл, расположенных как параллельно, так и перпендикулярно друг к другу; иногда они лежат по обе стороны центрального ребра. Это-выделение карбонитрида:1




Сталь 112 Экстракционная реплика. Видны тонкие иглы, расположенные по обе стороны длинного ребра и образующие одна с другой около 60º. Выделения состоят из цементита и карбонитрида:1




Сталь 112 Экстракционная реплика. Выделения карбонитрида в виде сетки, образованной взаимно перпендикулярными стержнями:1










Сталь 126 Реплика. Во многих ферритных зернах цементит имеет вид коротких пластин, образующих цепочку. Некоторые пластины кажутся более широкими в зависимости от характера сечения. Близко расположенные друг к другу пластины выявляются из-за замедленного травления. Имеется некоторое количество доэвтектоидного феррита 2000:1






Сталь 132 Тонкоигольчатый мартенсит, содержащий небольшие мартенситные частицы. Перлитный цементит почти растворился, сохранился заэвтектоидный цементит. Нерастворившиеся карбидные частицы способствуют образованию зернистого цементита во время медленного охлаждения 1500:1


6. Растворение перлита, цементита и феррита Сталь 133 Перлит полностью превратился в аустенит, а феррит сохранился. Однако в феррите произошли изменения, свидетельствующие о начале превращения. Из-за того, что температура отжига ниже Ас3, даже после длительной выдержки феррит не растворился целиком 1500:1






Сталь 134 Произошло частичное превращение перлитной структуры в аустенит. Слабо протравилась непревращенная исходная структура. Сильно протравился мартенсит, содержащий частицы цементита. При образовании аустенита цементит растворился не полностью. Частицы остаточного цементита выросли 1000:1


Сталь 134 Реплика. Сильно протравленные темные участки представляют собой феррит, внутри которого имеются субграницы и небольшие цементитные частицы. Более светлые участки – аустенит, превращенный в мартенсит. Видно, что часть цементита растворилась во время образования аустенита, и что сохранившиеся карбидные частицы окружены аустенитом. Нерастворившиеся зерна цементита цементита сильно выросли 10000:1


7. Ферритная оторочка Сталь 135 Во время относительно медленного охлаждения феррит, который выделился из аустенита, образовался на нерастворившемся феррите Затем из обогащенного углеродом аустенита при температуре Аr1 образовался перлит. Выделившийся и нерастворившийся феррит травятся по-разному, вероятно, из-за различной концетрации растворенных в нем легирующих элементов. 500:1


















Сталь % феррита, 75% перлита. Ферритные зерна более мелкие. Аустенитное зерно 8-10 балла 500:1







46 Сталь 136 Даже при больших увеличениях детали перлитной структуры не разрешаются, так как пластины цементита очень тонкие. Колонии перлита травятся неодинаково, так как в них различны ориентации ферритной матрицы. Маленькие светлые и темные частицы являются цементитом. 1500:1


49


51 Сталь 113 Отдельные зерна феррита выявляются более четко, чем в оптическом микроскопе из-за неодинакового контраста. Детали строения перлита хорошо разрешаются. Перлитные участки образуют с ферритом другой ориентации резкие границы. Зернограничный цементит присутствует в виде отдельных нитей. Светлые круглые частицы являются неметаллическими включениями. Размер зерна феррита приблизительно 100 мкм ² 2000:1